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CHAPTER 6
Weights-of-Evidence Modeling of Sedimentary Rock-Hosted Au Deposits, P.R. China

By

Chad S. Leonard, Mark J. Mihalasky, and Stephen G. Peters

Abstract
Distribution of sedimentary rock-hosted Au deposits and occurrences was modeled for

the Qinling and Dian-Qian-Gui areas of the P.R. China.  Modeling was performed using the
weights-of-evidence method, which is based on Bayesian probability, to produce resource
favorability maps from various geoscientific data, primarily geology and structure.  Maps of
favorability revealed numerous regional-scale exploration targets in the two study areas where
few, if any, known sedimentary rock-hosted Au deposits or occurrences exist.  Modeling also
indicated that the most important criterion for predicting sedimentary rock-hosted Au deposits
and occurrences in both the Qinling and Dian-Qian-Gui areas, in order of importance, are
geologic units, geologic unit-related factors (proximity to unit boundaries and lithodiversity), and
structure-related factors (proximity to faults and topographic slope).
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INTRODUCTION
The People’s Republic of China is one of the top-five Au producing countries in the world

today.  It produces nearly 180 tonnes of Au per year, of which 5 to 6 percent is extracted from
sedimentary rock-hosted Au deposits (Zhou and others, 1999).  Au reserves in these deposits are
estimated to be at least 450 t, with substantial additional resources believed to exist in approximately
166 known deposits (Zhou and others, 1999).  This makes the P.R. China second only to the U.S. in
endowment of this deposit type.  Li, Z.P. and Peters (1998) have shown that many of these deposits
are true Carlin-type, but also include other genetic types hosted in sedimentary rock (see Chapter 1
for a detailed discussion).  Interest in sedimentary rock-hosted Au (SRHG) deposits remains high
due to their economic significance in the P.R. China and Nevada, USA.

Weights-of-evidence (WofE), a geographical information system (GIS)-based technique
for modeling the distribution of mineral resources, was applied to two areas in the P.R. China to
produce favorability maps for the occurrence of SRHG “mineral sites”.  For the purpose of WofE
modeling, a mineral site is defined as a location belonging to any class SRHG deposit type,
which includes occurrences, mineral deposits, and ore deposits (see Cox and others, 1986, p. 1).

The two study areas are the Qinling and Dian-Qian-Gui regions of north-central and south-
central China (fig. 6-1).  Both of these areas are located along the margins of the Precambrian
Yangtze craton (see Chapters 2 and 3).  The northern Qinling area in northwestrn Sichuan, and

Figure 6-1.  Peoples Republic of China, showing the study areas of Qinling and Dian-Qian-Gui.



346

southern Gansu and southwestern Shaanxi Provinces is approximately 415,000 km2 and contains
about 68 known SRHG sites.  The area is named from the Qinling fold belt in which it resides.
The southern study area, Dian-Qian-Gui, also referred to as the Golden Triangle Region, is
approximately 105,000 km2 and contains about 61 SRHG sites.  The area lies in southeastern
Yunnan, southwestern Guizhou Provinces and northern Guangxi Autonomous Region (District).

The purpose of this study was to use WofE modeling to identify areas favorable for the
occurrence of SRHG sites for the two study areas in the P.R. China.  The objectives were:  (1)
examine and define the spatial associations between known SRHG sites and various geoscientific
data; (2) produce resource favorability maps for SRHG sites on the basis of these spatial associations;
and (3) interpret the favorability maps and suggest future targets for regional-scale exploration.

The WofE approach has been applied in previous studies and has shown positive results.
Graeme F. Bonham-Carter, Fritz P. Agterberg and D. F. Wright have applied the method
successfully to areas such as the Meguma terrane of Nova Scotia (see also, Bonham-Carter and
others, 1988; Bonham-Carter and others, 1989; Agterberg and others, 1990).  Studies conducted
in the United States have focused on the Nevada Great Basin.  Raines (1999) used the method to
produce favorability maps for hot spring-related Au deposit-types.  Mihalasky (1999), also
working in the Great Basin, produced favorability maps for Au–Ag mineralization for both
SRHG and epithermal deposit-types.

There has been little English language-published information of mineral resource analysis
in the P.R. China of this kind.  This study applies the WofE method to the Qinling and Dian-
Qian-Gui areas in the P.R China and demonstrates that the method works well using only data
extracted from regional-scale geologic maps.  The study also employs some techniques not
utilized in previous studies.

METALLOGENY and GEOLOGY
SRHG deposits, as described in Chapters 1 and 2, are found throughout the world in

countries such as the USA, P.R. China, Australia, and Russia.  They have been referred to in the
literature as Carlin-type,

fine impregnation-type, invisible Au, sediment-hosted disseminated Au deposits, and
sedimentary rock-hosted Au deposits.  These deposits were first recognized as a unique type of
deposit following the opening of the Carlin Mine in Nevada, USA in the early 1960s.  Since their
discovery and recognition as a separate class of deposits, there has been much debate as to their
origin.  This debate is fueled by a lack of supporting data to establish timing and type of ore-
deposition system (Arehart, 1996).  The following discussion of SRHG deposits is only a general
overview, as the scope of this paper is modeling the distribution of these deposits, not their
genesis.  Information on SRHG deposits in China comes from studies conducted in the P.R.
China, USA by authors Li, Z.P. and Peters (1998), and Wang and Zhang (1999).

General Characteristics of SRHG Deposits
SRHG deposits in the P.R. China and Nevada, USA typically are hosted in Paleozoic and

Mesozoic sedimentary rocks.  In the Qinling and Dian-Qian-Gui study areas, host ages are
primarily Mid-Paleozoic to Mid-Mesozoic (Li, Z.P. and Peters, 1998) and rocks generally consist
of mixed carbonates, calcareous siltstone and shale and siliciclastic rocks (Chapters 1 and 2).
Minerals commonly associated with Au include pyrite, arsenical pyrite, arsenopyrite, realgar-
orpiment, quartz, barite, and calcite.  Au usually is disseminated as micron to sub-micron (<1–
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mm-size) particles in, or with, As-rich pyrite.  This extremely small size of Au particles has led
some geologists to refer to it as “invisible Au.”  Hydrothermal alteration associated with SRHG
deposits includes decalcification, silicification, argillization, and decarbonatization, with the later
being much less pronounced in Chinese deposits than those in Nevada, USA (Li, Z.P. and Peters,
1998).  The amount and type of each alteration can vary from deposit to deposit.

Lithology and structures are important factors that control the formation and distribution
of SRHG deposits in both the P.R. China and Nevada, USA.  Common to almost all regions that
host SRHG deposits are histories of large-scale compressional and extensional tectonic events
(Li, Z.P. and Peters, 1998).  Structures such as high-angle normal faults and fold crests
commonly are trap sites for ore in these deposits.  Faults functioned as regional- and local-scale
conduits for ore-bearing fluids, while fold crests may have acted to trap or provide a release
point for fluids as they flowed upward along these zones.

Fluid inclusion studies of ore and alteration minerals have been conducted in the P.R.
China and Nevada, USA (Lu, H.Z., 1988; Arehart, 1996; Hofstra 1997; Wang and Zhang, 1999)
and suggest that Chinese SRHG deposits formed at temperatures ranging from 165 to 290 °C and
pressures of 52 to 560 bars.  Nevada deposits appear to have formed at similar temperatures (200
to 250 °C), but generally higher pressures (400 to 800 bars).

The age of ore formation of SRHG deposits is perhaps the one characteristic that is the most
difficult to determine.  Many studies have been conducted in Nevada, USA but most have been
inconclusive.  Only a few studies have been conducted in the P.R. China and these too have been
uncertain and show little agreement in their findings.  The difficulties in dating these deposits include:

• They are deposited in sedimentary rocks following transport along high-angle faults
cutting through numerous stratigraphic layers, with each layer representing various time
intervals.  Therefore, age determination by stratigraphic means can be extremely difficult
and largely irrelevant.

• Syn-depositional alteration minerals, when present, are fine grained and low-temperature,
making dating by radiometric means difficult at best.
Due to these difficulties, studies in the P.R. China and Nevada, USA have resulted in age

determinations ranging from late Tertiary to very early Paleozoic.  Seedorf (1991), using
structural and stratigraphic constraints, reported an age of mineralization of mid-Tertiary.
Arehart (1996) suggested a possible age of mineralization based on radiometric data as between
80 to 130 Ma.  Radiometric studies conducted in China yield just as large a range, with ages
ranging from 12.7 to almost 400 Ma (Li, Z.P. and Peters, 1998).

Regardless of age variances, the model adopted for the formation of the Chinese deposits is
generally the same as the Nevada deposits, and it is reasonable to assume that clusters of deposits
in the Qinling and Dian-Qian-Gui study areas may have resulted from the same tectono-thermal
event.  Fluids from several kilometers deep in the crust circulated through the surrounding rocks,
scavenging Au and other metals.  Regional-scale tectonic or possibly magmatic events resulted in
an increase in temperature and pressure.  This caused metals such as Au to go into solution.  Au
could have been carried in solution as a bisulfide complex, [Au(HS)]-2 and migrated upwards along
deep fractures or “feeder channels” (Wang and Zhang, 1999).  As the fluids moved upward along
these conduits, temperature and pressure decreased.  When the temperature and pressure reached a
certain threshold, Au and other minerals were deposited as equilibrium was disrupted.  Another
possibility is that these fluids rose until they came into contact with meteoric waters in carbonate
rocks, once again disrupting equilibrium and resulting in Au deposition.
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Geologic Setting
The Precambrian Yangtze craton lies in southeastern China (fig. 6-2) and is composed of

a Proterozoic crystalline basement overlain by late Proterozoic to Mesozoic sedimentary and
volcanic rocks.  The geologic history of the craton is marked by numerous orogenies resulting in
subduction and closure of Paleozoic-Mesozoic ocean basins along the craton’s margin.  As a
result, the margin of the craton is characterized by sedimentary basins filled with oceanic
sediments.  It is within two of these basins that the Qinling and Dian-Qian-Gui study areas are
situated.  The Qinling area is located on the northwestern margin of the craton, while the Dian-
Qian-Gui area is located on the southwestern margin (fig. 6-2).  While both of the areas have
comparable tectonic histories and features, there are a few differences.

Geologic Summary of the Qinling Area
The Qinling area, also known as the Chuan-Shan-Gan area, is positioned in a large, east-

trending sedimentary basin separating the Precambrian Yangtze and Hubei cratons (fig. 6-2).
The basin was formed between middle Paleozoic and early Mesozoic time by the deposition of
greater than 10,000 m of sedimentary rock, the stratigraphy of which is as follows:

• Devonian – limestone interbedded with calcareous sandstone.
• Carboniferous – limestone, carbonaceous shale and quartz sandstone.
• Permian – limestone interbedded with siltstone and silty shale.

Igneous intrusions are found throughout the Qinling area and mainly consist of Mesozoic
granite, granodiorite, and mafic rocks.  Volcanic deposits are smaller in size and number and
consist of late Paleozoic andesite and basalt.  In general, SRHG deposits are not directly
associated with volcanic or intrusive rocks.

Figure 6-2.  Tectonic setting of the Qinling and Dian-Qian-Gui areas.  The Dian-Qian-Gui area is located in a
sedimentary rock province along the southwestern margin of the Yangtze craton, while the Qinling area is positioned
in a sedimentary basin that separates the Hubei and Yangtze cratons.  Modified from Li, Z.P and Peters (1998).
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The major tectonic feature of the Qinling area is the Lixian-Baiyun-Shanyang fault zone
(6-3).  This east-west trending fault system has been interpreted as a regional-scale shear zone,
which is a remnant of subduction between the Hubei and Yangtze cratons.  It is along this zone
that SRHG deposits are commonly associated.  This has led some to conclude that this zone was
the major conduit for ore-forming fluids (Li, Z.P. and Peters, 1998).

East Qinling Fold Belt

West Qinling Fold Belt

Hubei Craton

Yangtze Craton

Regional-Scale Shear Zone

Figure 6-3.  Generalized Tectonic Setting of the Qinling area.
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Geologic Summary of the Dian-Qian-Gui Area
The Dian-Qian-Gui area has a geologic setting similar to that of the Qinling area where the edge of

the Precambrian Yangtze craton is overlain by shallow and deep-water sedimentary and volcanoclastic
rocks of Late Paleozoic to early Mesozoic in age.  The stratigraphy of the sedimentary rocks is as follows:

• Carboniferous – bioclastic and cherty limestone.
• Permian – bioclastic and cherty limestone and argillite.
• Triassic – limestone, dolomite and argillite.
Igneous activity was far less pronounced in Dian-Qian-Gui than in the Qinling area.  Intrusive

rocks such as granite, diabase and gabbro are scattered across the north and south of the area, but
are not common.  Volcanic rocks are located in the northwestern part of the area and mainly consist
of Paleozoic and Mesozoic basalt flows.

The Mesozoic Yanshanian Orogeny (210 to 90 Ma) had a major effect on the present day
landscape and distribution of SRHG deposits in the Dian-Qian-Gui area.  During this time,
compression from the subduction of Pacific Basin plates under the eastern edge of the continent
resulted in folding of the overlying sedimentary strata.  Fold axis trends mainly east-northeast and
north-northwest.  Commonly, these folds are cut by faults.  After folding occurred, major northwest-
trending extensional structures formed, most notably the Youjiang

fault zone or fault system (fig. 6-4).  This fault zone is thought to have acted as the major
conduit for ore-forming fluids in the area (Li, Z.P. and Peters, 1998) (Chapter 3).

Yangtze Craton

Youjiang
Fault System

Figure 6-4.  Generalized
tectonic setting of the
Dian-Qian-Gui area.
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WEIGHTS-of-EVIDENCE (WofE) MODELING
Weights-of-evidence (WofE) is a GIS-based, data-driven methodology for integrating

spatial data patterns and building predictive models.  WofE uses (1) conditional probabilities to
measure the spatial association between point-objects and patterns, and (2) Bayes’
probability’theorem to mathematically integrate the patterns to predict the distribution of the
point-objects.  As applied in this study, the patterns represent geoscientific phenomena that are
likely to be useful mineral predictors, and are referred to as “evidence maps”.  The point-objects
represent known mineral sites, and are referred to as “training sites”.”

Evidence maps are typically multi-class and include representations of geological map
units, structure, geochemical, and geophysical anomalies (as well as remotely sensed images and
other earth observation data).  In order to facilitate combination, the evidence maps are usually
reduced to “predictor maps” of a few discrete states, typically binary- or ternary-class, where the
spatial association between the training sites and an evidence map is optimized.  The predictor
maps collectively constitute “layers of evidence”.

Training sites are used to identify and weight the importance of predictor patterns on the
evidence maps.  Training sites collectively possess characteristics that are common to a particular
deposit type (SRHG, for example).  It is presumed that their location and presence enable
prediction of the particular deposit type represented.  Training sites are regarded as binary, either
present or absent.  There is no provision for modeling training site size, grade, or tonnage in
WofE, as the training sites are not themselves classified or weighted, and each point is treated as
equally important.

A WofE model consists of integrated predictor patterns and is expressed in the form of a
single “favorability map”.  The favorability map represents the spatial distribution of training
sites in terms of the spatial distribution of predictor patterns, as well as the predicted distribution
of yet unidentified sites.

The WofE method is based on a technique originally developed in a non-spatial context
for medical diagnosis (Spiegelhalter and Knill-Jones, 1984) and has been modified by Bonham-
Carter and others (1989) to deal with spatial prediction—“diagnosing” mineral occurrences using
the “symptoms” of various geoscientific phenomena.  The technique is discussed in detail in
Bonham-Carter and others (1988, 1989) and Agterberg and others (1990).  Wright and Bonham-
Carter (1996) applied WofE in a mineral resource exploration context and yielded positive results
when a new discovery was made in a favorable zone predicted by the model.  In a mineral
resource assessment context, Mihalasky (1999) and Raines (1999) demonstrated that WofE
yields assessment tracts that are comparable to expert-delineated tracts (Cox and others, 1996).

Weights-of-evidence modeling was carried out in a geographical information system (GIS)
environment using the ArcView® GIS extension “Arc-SDM””(Spatial Data Modeler), developed
by the U.S. Geological Survey and the Geological Survey of Canada (Kemp, 2001).  The analysis
was performed within the confines of a user-defined geographic region, and is referred to as the
“study area” (in this case, two study areas:  Qinling and Dian-Qian-Gui; see figure 6-1).

Modeling Procedures
Weights-of-evidence modeling can be subdivided into three main procedures:  (1)

measurement of spatial association between the training sites and the evidence maps, (2)
optimization of the evidence maps for prediction, and (3) combination of the predictor maps to
create favorability maps (fig. 6-5).   An overview of WofE modeling concepts, terminology, and
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techniques is given below.  For a more thorough discussion of the modeling equations, and their
derivations and applications, consult Bonham-Carter (1989), Agterberg (1990) and Bonham-
Carter (1994).

In the first procedure, conditional probabilities that involve area proportions are used to
determine the spatial association between the training sites and an evidence map.  Each evidence
map unit is treated individually as a binary pattern (evidence map unit present or absent), and is

1

3

2

Training
Sites

Evidence Maps

Prior
Probability

Bayesian
Map

Combination

Bayesian
Map

Combination

Predictor Maps
(Layers of Evidence)

Weighted
Evidence Maps

Measurement
of Spatial

Association

Posterior Probability
( MapFavorability)

Point
Density
Point

Density
Area

Analysis
Area

Analysis
Point-in-Polygon

Analysis
Point-in-Polygon

Analysis

Classification
Scheme

Classification
Scheme

Evidence
Optimization

Evidence
Optimization

W & W
+ -

W & W
+ -

Figure 6-5.  Flow chart illustrating the weights-of-evidence modeling method.  The method is subdivided
into 3 main procedures, as indicated by the numbered brackets on the left.  See text for discussion.
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composed of the area of the particular evidence map unit being evaluated and the combined total
area of the remaining evidence map units.  A training site likewise is regarded as a present or
absent.  For the purposes of analysis, a training site is assumed to occupy a small unit-cell area,
which for this study is 1 km2.

Two weights are calculated with respect to the training sites:  W+ for a particular evidence
map unit present, W– for absent.  The value of the weights depend on the ratio of training sites that
fall on a particular evidence map unit to the total number of training sites, versus, the ratio of the
particular evidence map unit area to the total evidence map area.  Where no spatial association exists
(i.e., the two ratios are equal), the weights are both zero; where there are more training sites in a
particular evidence map unit than would be expected due to chance (i.e., the ratio of training sites to
map unit area is larger), W+ is positive and W– is negative.  Where data is unknown or missing
(incomplete evidence map coverage), the weights are assigned the value zero.  The weights can be
combined into a single coefficient called the contrast (C), where C = W+ – W–.  Contrast provides a
useful measure of the strength of the spatial association between the training sites and the individual
evidence map units.  Contrast is zero when the training sites and an individual evidence map unit
overlap by the expected amount due to chance.  It is greater than zero for positive spatial
associations and less than zero for negative associations.  Significance of C is estimated by
calculating its Student-t value, or “Studentized C”, which is the ratio of C to its standard deviation.

In the second procedure, the evidence maps are reclassified to predictor maps of two
units (predictor pattern present; predictor pattern absent), where the spatial association between
the training sites and an evidence map is optimized.  While reclassification to more than two or
three units is possible, predictor maps of just a few units yield more stable and meaningful
weights of spatial association and facilitate interpretation of the favorability map.

The reclassification of the evidence maps involves both objective and subjective
methods.  For each evidence map, an individual evidence map unit that is highly correlated
(spatially) with the training sites may be selected as a predictor pattern, or multiple evidence map
units may be grouped in such a way as to maximize the spatial association between the training
sites and the evidence map.  The weight estimates, the value of C, the variances of the weights
and C, and the significance of C, are fundamental to identifying evidence map units that are
optimal for prediction.  A significance level of 1.282 (90 percent confidence, tabled Student-t
value) was used for selecting predictor patterns in this study.

Nominal (or categorical) scale evidence maps, such as geological maps, are reclassified
by grouping individual units that show strong spatial associations with the training sites (guided
by what is both geologically reasonable and numerically advantageous).  A bar graph is used to
illustrate the weights of spatial association for each evidence map unit.

Ordinal (or ranked), interval, and ratio scale evidence maps, such as geophysical or
geochemical anomaly maps, or distance buffer maps, can be reclassified by grouping successive
cumulative evidence map unit areas, or by subjectively identifying anomalies.  The optimum
threshold is determined by the number of successively combined units that collectively
demonstrate the strongest spatial association.  In practice, a line graph is constructed which plots
area-cumulative C along the y-axis and distance buffers or anomaly intensities along the x-axis, as
shown in Figure 6-6.  In this simple example, the area-cumulative C peaks at the 3rd interval on
the x-axis.  Reclassifying it into two units, 0-3 and 3-10, is one way to optimize the evidence map.

To facilitate the selection of a suitable threshold, Studentized C, W+, W-, and the inverse of
W- (Mihalasky and Raines, 2001) were also plotted.  Studentized C assists in the selection of a
statistically significant C-peak (the optimum threshold).  W+ and W- provide additional
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information on the make up of C, such as whether it is composed predominantly of positive or
negative weight, or equal proportions of both.  The inverse of W- provides a convenient, graphical
means by which to illustrate the make up C.  Where the W+ and the inverse of W- curves
crossover, the relative influence of W+ and W- on C is roughly equal.  That is, the magnitude of W-

is equal to the magnitude of W+.  Where the value for the inverse of W- is less than W+ (left of the
crossover on the graph), C is composed of a greater proportion of W+ than W-.

Predictor patterns that are delineated using an optimum threshold to the left of the
crossover serve to include areas likely to host the deposit-type(s) represented by the training sites.
These predictor patterns are referred to as “inclusive evidence” and are characterized by narrowly-
defined patterns with W+ magnitudes that are significantly larger than W-.  Conversely, where the
inverse of W- is greater than W+ (right of the crossover on the graph), C is composed of a greater
proportion of W- than W+.  Predictor patterns that are delineated using an optimum threshold to the
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Figure XX. Area-cumulative contrast curve for an evidence map that has 10 classes. This curve is used to help determine the optimum threshold
ordinal (or ranked), interval, or ratio scaled data. The table in the lower portion of the figure shows how the

classes would be grouped into predictor pattern present or absent for measurements of proximity (0 = close; 10 = far), intensity (0 = low; 10 = high), and
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between
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Figure 6-6.  Area-cumulative contrast curve for an evidence map that has 10 classes.  This curve is used to
help determine the optimum threshold between absence and presence of a predictor pattern for ordinal (or
ranked), interval, or ratio scaled data.  The table in the lower portion of the figure shows how the classes
would be grouped into predictor pattern present or absent for the measurements of proximity (0 = close;
10 = far), intensity (0 = low;  10 = high), and concentration (0 = low;  10 = high).
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right of the crossover serve to exclude areas unlikely to host the deposit-type(s) represented by the
training sites.  These predictor patterns are referred to as “exclusive evidence” and are
characterized by broadly-defined patterns with W- magnitudes that are significantly larger than W+.
For this study, inclusive evidence was used where possible.  The predictor patterns were delineated
using an optimum threshold corresponding to the highest C-peak to the left of the W+ and inverse
of W- crossover.  This process will become clearer as the graphs for each model are presented.

In the third procedure, the predictor maps are combined using a log-linear formulation of
Bayes’ Rule to produce the favorability map.  Central to Bayes’ Rule is the concept of posterior
and prior probabilities:  the prior probability is the probability of the occurrence of a training site
before evidence is considered; the posterior probability is the probability after the evidence is
considered.  In summary, the prior probability that a unit-cell area (1 km2 in this case) contains a
training site is successively updated by the addition of each new piece of evidence to produce a
posterior probability.  The prior probability is equal to the probability that the unit-cell (1 km2 for
this study) contains a training site, given no further information, and is equal to the density of
known training sites in the study area.

Bayes’ Rule effectively revises the prior probability by incorporating the new evidence
into the model (Mendenhall and Reinmuth, 1974, p. 84).  The posterior probability reflects both
the prior and the new evidence, and with each subsequent addition of new evidence, the posterior
is treated as the prior, thus providing a more efficient model for prediction (Bonham-Carter,
1994; Mendenhall and Reinmuth, 1974).  The posterior probability calculated after the addition
of new evidence may be larger or smaller than the prior probability, depending on the overlap
combination of evidence maps and their weights (i.e., if evidence for the occurrence of a training
site is added, the posterior probability rises, and vice versa) (Agterberg, 1989; Bonham-Carter et
al, 1989).  The degree to which a particular evidence map affects the posterior probability is
dependent upon the strength of its spatial association with the training sites.

The favorability map is produced by applying a user-defined classification scheme to the
posterior probabilities.  A quantile approach to creating a classification scheme is often used.
This is an area-based scheme where the posterior probability class intervals (the breakpoints) are
determined so that each of the posterior probability classes is roughly equal in area.  For this
study, an alternative approach using natural breakpoints (which is the software default) was used,
where the posterior probabilities were grouped into seven classes.  The final classified map
shows favorability of SRHG mineral site occurrence, expressed as the posterior probability that a
unit cell contains a training site.

Conditional Independence
An important assumption made in WofE modeling is that the predictor maps be

conditionally independent (CI) of one another with respect to the training sites (see Bonham-
Carter, 1994a).  The favorability values may be adversely affected if, at the locations of the
training sites, the presence of a predictor pattern in one evidence map is dependent on the presence
of a predictor pattern in another evidence map.  Violation of CI results in either the over-estimation
or under-estimation of posterior probabilities, and the predicted training site frequencies either
notably exceed or fall short of the observed frequencies in the most and least favorable areas of the
favorability map (Agterberg and others, 1990).  In essence, the areas of highest and lowest
posterior probability may be an artifact of pattern redundancy (overlap) among the predictor maps,
and the amount of over-estimation or under-estimation is commonly non-linear.
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The assumption of CI is necessary because calculation of the spatial weights of
association is carried out independently between the training sites and each predictor map.  The
weights are then combined using a single equation, resulting in posterior probabilities that are
not exactly the same as those calculated directly from the data (Agterberg, 1989b; Bonham-
Carter, 1994a).  Independent calculation allows for in-depth data exploration, providing the
opportunity to examine bivariate relationships and yielding useful insights into the relative
contributions of each predictor map.

In the earth sciences, complete CI is difficult to achieve because geoscientific data (hence
the evidence maps) are commonly interrelated.  Consider, for example, stream sediment
geochemistry and bedrock lithology.  There will obviously be some dependency because
chemistry reflects the source rock type.  Intuitively, the assumption of CI is almost always
violated to some degree, generally more so as the number of evidence maps increases (Bonham-
Carter, 1994).  It is important to understand how serious the violation is so that the appropriate
action can be taken to minimize the problem and so that proper judgments can be made when
evaluating areas of high favorability.

The degree to which the CI assumption is satisfied can be tested for, and the purpose of
such a test is to determine the magnitude of any predictor map pattern dependencies and to
identify the map(s) responsible for the dependency.  If a map is found to be in serious violation
of CI, it can then be (1) rejected from the model, (2) spatially combined with another map in
order to minimize the dependency, or (3) modified in some way as to reduce the problem (for
more information, see Agterberg and others, 1990; Bonham-Carter, 1994a).

Two tests are applied to determine whether the assumption of CI is satisfied:  a pairwise
and an overall goodness-of-fit test, both of which make use of the observed versus the predicted
number of observations (training sites).

The pairwise test measures CI between all possible pairings of predictor maps (with
respect to the training sites) by calculating the

χ 2 (chi-square) statistic for each map pair.  This value is compared to a tabled « 2 value,
assuming one degree of freedom, for a given level of significance.  For this study, a significance
cutoff of 98 percent (χ2 = 5.4) was selected.  Values higher than the selected cutoff were rejected,
indicating that the assumption of CI between two predictor maps had been violated, therefore
measures were taken to mitigate the dependency.  Conditional independence may be present due to
three-way or multi-way interactions, and testing for these cases is also possible, but for practical
purposes, chi-square testing reveals the most serious CI violations (Bonham-Carter, 1994a).

The overall test is a measure of the CI between all of the predictor maps in a model as a
whole.  The overall test is very simple, consisting of a comparison of the predicted number of
training sites to the observed number (observed/predicted, referred to as the “CI ratio”).  A 10
percent to 15 percent difference in the number of predicted training sites from the number of
observed (CI ratio of 0.9 to 0.85) indicates that some degree of redundancy exists among the
predictor maps, suggesting that CI is being violated, and may warrant a check of the chi-square
tests and some sort of remedial action (Bonham-Carter, 1994a).  Unlike the chi-square, the
overall test is not a formal test, and in practice, the predicted number of training sites is usually
higher than the observed (Bonham-Carter, 1994a).

In many instances, a model will pass one, but not both, goodness-of-fit tests.  The goal is to
establish a model that contains the least amount of conditional dependency, which may involve
eliminating or combining a number of predictor maps until this occurs.  In the event that the
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assumption of CI is not fully satisfied, a model is still useful, but true probability estimates cannot
be made nor are expected.  In this instance, the calculated posterior probabilities, which are ratio-
scale data, can be treated as ordinal-scale ranks and referred to as “favorabilities” (in the analysis
and modeling sections of this paper below, the term “favorability” is used in place of probability).
Interpretations as to which areas on the favorability map are more likely to host training sites can
nonetheless be made.  Since this study was concerned only with modeling the distribution of SRHG
sites, not with estimating their number or size, achieving CI was not an important consideration.

Error and Uncertainty
An important aspect to interpreting a favorability map is recognizing and quantifying the

uncertainty inherent to the posterior probabilities.  The two primary sources of uncertainty are:
(1) the uncertainty due to variances in weight estimates (W+ and W–); and (2) the uncertainty due
to one or more of the predictor maps having incomplete coverage (i.e., missing data) (Bonham-
Carter and others, 1989).

The uncertainty due to the weights, which includes the uncertainty of the prior
probability, is in general correlated to the posterior probability (Bonham-Carter and others,
1989).  Uncertainty due to missing data, where one or more of the predictor map patterns is
unknown or incomplete in a given region, results in posterior probability estimates that are less
certain than those based on more, or all, of the predictor map patterns (Agterberg and others,
1990; Bonham-Carter and others, 1989).  The uncertainties due to weights and due to missing
data may be examined separately, or may be combined to examine total uncertainty.

In addition to the uncertainties due to weights variances and missing data, a relative
certainty (variance) of the posterior probability can be calculated by dividing the posterior
probability by its standard deviation, which in effect applies an informal Student t-test to
determine whether the posterior probability is greater than zero for a given level of statistical
significance (i.e., compared to a tabled t-value) (Bonham-Carter and others, 1989; Agterberg and
others, 1993).  The larger the t-value over the critical tabled t-value cutoff, the greater the
certainty of the posterior probability (i.e., the larger the posterior probability compared to its
standard deviation).  The relative certainty is often more useful than the weights variances or
missing data uncertainties because it indicates the degree of confidence to which the posterior
probabilities are meaningful, as opposed to being an artifact of chance effects or interactions.
Care should be taken when interpreting the relative certainty because it is based on a normal
distribution and sensitive to CI violations.

The four uncertainty factors (weight variances, missing data, total, and relative) may be
used to create uncertainty maps for comparison to the favorability map, or the uncertainty factors
may be combined in various ways and reclassified to a binary-class map which can be used to
mask-out areas of the favorability map that are deemed to be too uncertain (Bonham-Carter and
others, 1989; Bonham-Carter, 1994a).

DATASETS and ANALYSIS
Evidence maps used in WofE modeling of SRHG sites are primarily variations of host

units and structure derived from digital geologic maps, although other databases also were
consulted.  The following presentation discusses both study areas in turn from raw data, to
evidence maps, to analysis of spatial associations with training sites, and finally, to the
generation of predictor maps.  The analyses and results are presented in figures and tables.
Model validation is then discussed along with overall CI.
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The standard projection used for all GIS dataset processing and display is as follows:
Projection: Albers Equal Area Conic
Central Meridian: 105˚E
Origin: 0˚
1st Standard Parallel: 25˚N
2nd Standard Parallel: 47˚N
Datum: WGS84

All base datasets have a scale of 1:1,000,000.  At this scale, resolution or error is +/-1000
m.  In order to account for this error, all buffering of linear features was done at 2 km intervals
from 0 to 50 km.

Training Set
The training set was modified from the database of Li, Z.P. and Peters [v1.2] (1998) by

adding more accurate longitude and latitudes to the existing 113 sites.  This revision was carried
out as part of an on-going collaboration and compilation by Tianjin Geologic Academy and the
U.S. Geological Survey.  In addition, new sites were added to the database, for a combined total
of over 160 sites.  Of these, 68 and 61 are located in the Qinling and Dian-Qian-Gui areas
respectively (tables 6-1 and 6-2).  The classification and characteristics of these sites are detailed 
in Chapters 1 through 5., and final corrections to this database—not included in this analysis and
this Chapter—are contained in Appendix IV.

ID DEPOSIT PROVINCE LATITUDE LONGITUDE   ID DEPOSIT PROVINCE LATITUDE LONGITUDE

01 Amangshaji Gansu 35.4000 102.3333 085 Lubuge Gansu 34.4181 104.8478
02 Anjiacha Gansu 33.9453 105.4994 086 Luoba Gansu 34.2725 105.0867
03 Badu Gansu 33.5000 104.5000 087 LuoDa Gansu 33.9636 103.9783
05 Badun Shaanxi 34.9200 106.9000 091 Mahuanggou Gansu 34.0017 102.8000
14 Ceyang Gansu 34.1100 103.7500 094 Maoling Sichuan 32.7000 103.5000
20 Damingshan Gansu 34.0833 101.9833 095 Maquan Sichuan 33.0167 104.0167
21 Daoqiejia Sichuan 32.8958 104.1444 097 Maxuong Shaanxi 33.2000 109.0806
23 Dayakou Sichuan 32.3000 102.7600 098 Miaolong Gansu 33.8500 104.0028
24 Dazhai Sichuan 32.6992 103.6417 100 Mingzhushan Gansu 34.4181 104.8478
25 Dongbeizhai Sichuan 32.7844 103.5564 107 Pangjiahe Gansu 34.1139 104.5750
26 Erdaqiao Sichuan 33.3175 104.0269 110 Pingding Gansu 33.7636 104.4478
35 Greatwall Gansu 34.1000 104.7583 117 Puzilong Sichuan 32.6700 103.9000
37 Guojiapo Gansu 33.0494 104.4958 118 Qiaoqiaoshang Sichuan 32.7250 103.6750
39 Heduosi Sichuan 33.5000 104.5000 120 Qilixia Sichuan 33.0000 104.0000
41 Heye Sichuan 33.2444 104.1489 126 Quongme Shaanxi 34.1361 109.7297
42 Huachanggou Shaanxi 33.2953 105.8422 129 Sanrengou Gansu 34.1800 102.2600
43 Huameinao Sichuan 33.0000 103.8000 133 Shijiba Gansu 33.0544 104.4783
44 Huanglong Sichuan 32.7708 103.8917 136 Shuiniujia Sichuan 32.7528 104.2500
47 Huangtupo Sichuan 32.9958 104.2950 137 Shuishengou Sichuan 32.6000 103.1000
49 Hujiamo Sichuan 32.8100 104.2156 139 Songpan Gansu 34.1089 102.2389
50 Jiangjuncha Shaanxi 34.1817 109.6756 140 Songpnagou Sichuan 32.7681 104.1567
52 Jiawuchi Gansu 34.2000 104.7833 147 Tuongkangling Shaanxi 32.9700 108.5300
54 Jiguanzui Gansu 34.0139 102.7917 150 Woxi Shaanxi 33.8300 108.4000
55 Jilongshan Gansu 33.8500 104.0000 152 Xiangzicha Shaanxi 34.1361 109.7297
57 Jindonggou Gansu 34.0067 102.3200 155 Xidayu Shaanxi 33.4000 109.2700
58 Jinlongshan Gansu 35.0544 103.0000 156 Xinguan Gansu 33.0278 104.4278
63 Jiuyuan Gansu 33.8361 104.2608 159 Yaerma Shaanxi 33.3300 109.4300
64 Kama Gansu 34.1000 104.5900 160 Yangjishan Shaanxi 33.8600 108.1900
69 Laodou Gansu 35.0544 103.0000 163 Yata Shaanxi 34.0800 106.5300
71 Lazikuo Gansu 34.9636 103.9783 166 Yinchanggou Sichuan 32.2850 104.2583
74 Lijiagou Shaanxi 33.1361 106.4342 167 Zheboshan Sichuan 32.8853 103.3072
76 Longdishui Sichuan 32.7708 104.1069 169 Zhepeshan Sichuan 32.6700 103.9000
77 Longhue Sichuan 33.6000 103.4000 172 Zhongqu Gansu 34.1089 102.2389
80 Longquan Gansu 34.2000 104.8000 173 Zhuongqu Sichuan 32.8800 103.3000

TABLE 6-1.  Names and coordinates of SRHG training sites in the Qinling area.



359

ID DEPOSIT PROVINCE LATITUDE LONGITUDE �  ID DEPOSIT PROVINCE LATITUDE LONGITUDE

04 Badu Guangxi 24.2500 105.7300 �084 Loudong Guangxi 24.3633 106.9500
06 Baguamiao Guizhou 25.0000 105.7500 �088 Luolou Guizhou 24.3100 106.8000
07 Baidi Guizhou 24.7000 106.1300 �089 Maanqiao Guangxi 24.6333 105.4328
09 Bannian Guizhou 24.8000 105.6500 �093 Manaoke Guangxi 25.6167 105.6000
12 Baxi Guizhou 25.6200 105.6028 �099 Mingshan Guangxi 24.2600 106.8300
13 Beiyinpe Guizhou 24.9833 105.7500 �103 Nabi Gansu 24.0700 105.9100
18 Dachang Guizhou 25.0167 106.0833 �105 Nibao Guizhou 25.5167 105.6167
19 Daguan Guangxi 24.3000 106.4500 �108 Pegao Guizhou 25.7800 104.9500
22 Dashui Guizhou 25.3000 105.1000 �111 Pingshan Gansu 24.5600 106.1800
29 Gaojiaao Guangxi 24.2200 105.7000 �112 Pingtang Hunan 24.5200 105.6600
30 Gaolong Yunnan 24.2200 105.6500 �113 Pingwang Shaanxi 24.2400 106.3000
31 Gedang Yunnan 23.5900 105.5400 �115 Posang Guangxi 23.8900 107.2200
33 Gengxin Guangxi 24.6600 106.8400 �116 Pouyajing Guizhou 25.2000 106.2900
34 Getang Yunnan 25.2900 105.3100 �119 Qilicun Guangxi 24.6592 104.6250
51 Jiaoquan Guizhou 25.3900 105.8600 �122 Qingping Guizhou 25.1000 106.1000
53 Jidoman Guangxi 23.7000 106.8200 �123 Qiuling Guizhou 25.4000 105.5167
56 Jinba Yunnan 23.7800 105.8200 �131 Shaziling Guizhou 25.2500 105.5000
59 Jinshan Guizhou 25.3500 105.6900 �138 Sixiangchang Guangxi 24.6667 105.4200
60 Jinya Guangxi 24.5600 106.8700 �141 Tangshang Guangxi 24.4700 104.7900
62 Jinzhudong Gansu 24.9200 106.4000 �142 Tangxinzhai Guizhou 25.4200 105.1900
66 Laerma Guangxi 24.6000 105.0000 �143 Tianwan Guangxi 24.6592 104.6250
67 Langquan Guangxi 24.8300 106.3100 �144 Tieshengou Guangxi 24.6600 106.8400
68 Lannigou Guangxi 25.1600 105.8500 �148 Wangme Guizhou 25.3900 105.8600
72 Lianhecun Guizhou 25.3500 105.5500 �149 Weihuai Guangxi 23.6600 106.8500
73 Liba Guizhou 25.1667 104.6667 �158 Xuongwu Guangxi 24.3100 106.8600
75 Longchuan Sichuan 24.1100 106.8000 �161 Yangyou Guangxi 24.1300 105.8100
78 Longhuo Guangxi 24.6200 105.5400 �162 Yaojian Guizhou 25.3900 104.9500
79 Longna Liaoning 24.7900 104.6400 �164 Yiaxiang Guangxi 24.5700 106.2000
81 Longshan Guangxi 24.6500 105.4233 �168 Zhen’an Guizhou 25.1800 106.2600
82 Longwanggou Guizhou 25.8333 105.0000 �174 Zimudang Shaanxi 25.5200 105.5300
83 Longzhen Guangxi 23.6800 106.8000

TABLE 6-2.  Names and coordinates of SRHG training sites in the Dian-Qian-Gui area.

Lixian-Baiyun-
Shanyang

Regional-Scale
Shear Zone

Figure 6-7.  SRHG
training sites in the
Qinling study area.
Names and locations
of deposits are listed
in Table 6-1.
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The distribution of the 68 SRHG sites in the Qinling area are shown in figure 6-7 (names
and coordinates are listed in table 6-1). The sites lie in an approximately east-west trending, 25–
km-wide zone.  It is also of interest that while SRHG sites are present across this area, the
majority lie in the northern and southern regions of the Gansu and Sichuan provinces,
respectively.  Note the location of the Precambrian Yangtze craton, approximately 300 km from
the large cluster of sites (figs. 6-7 and 6-8).

Distribution of the 61 SRHG sites in the Dian-Qian-Gui area are shown in figure 6-8.
Their names and coordinates are included in table 6-2.  The sites are primarily located in the
Guizhou and Guangxi Provinces.  Note that they appear to be distributed northwest-southeast, at
varying distances (<100 km) along the Youjiang fault zone.

Layers of Evidence
The main evidence data used in this analysis were geological map unit, Paleozoic-

Mesozoic geological map unit contacts, lithodiversity, fault proximity, topographic slope, and
anticline hinge proximity.  Experience and expert-based knowledge was used to select and
evaluate the suitability of these datasets for WofE modeling.

Youjiang
Fault System

Figure 6-8.  SRHG
training sites in the
D i a n - Q i a n - G u i
study area.  Names
and locations of
deposits are listed in
Table 6-2.
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Geologic Map Units
Geologic maps used as evidence layers were obtained from Geologic Data Systems, Inc.

(GDS), Denver, CO and from unpublished data sources in the USGS.  This data was compiled
from geologic province maps ranging in scale from 1:500,000 to 1:2,500,000.  The maps were
reconciled to a scale of 1:1,000,000 and merged together.  The use of these multiple province
maps resulted in some areas of the evidence maps containing more detail than others, and in
some instances, there is little uniformity in labeling of units.  This posed problems, specifically
with units converging at province borders.  In many instances, several units in one province were
grouped together as one unit in an adjacent province.  In such cases, the single unit was used for
naming purposes.  Map colors and legends used for the resulting geologic maps are based on
several published geologic maps of the P.R. China.

The geological map used for analysis of spatial associations in the Qinling study area,
after modifications, is presented in figure 6-9.  The corresponding legend is provided in figure 6-
10.  The Qinling fold belt is clearly delineated by the strong folding of geologic units in the
central and southern regions of the map.  The units of interest to this analysis are the sedimentary
carbonate units of Devonian to Cretaceous age (refer to legend, fig. 6-10).  Igneous units also are
present throughout this region, most notably intrusive granites (dark red) in the center of the map.

East Qinling Fold Belt

West Qinling Fold Belt

Figure 6-9.  Geologic map of the Qinling area (legend is found in Figure 6-10).
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STRATIGRAPHY
Quaternary
Alluvium, mud, silt, loess;
pebble beds in west Qinling area
Neogene
Mainly continental clastics,
volcanics in Jinghong area
Eogene
Clastic rocks with volcanics
in eastern Yunnan
Cretaceous
Mainly continental and marine
clastics with minor volcanics
in western Qinling area
Jurassic
Continental clastic rocks
with intrusives in western
Qinling area

Incorporated beds; undivided
Triassic
Carbonates interbedded with
sandstone and shale, volc-
anics in Zhongdian and
Baoshan areas
Incorporated beds; undivided
Permian
Continental clastic rocks inter-
bedded with coal in Qinling
area, volcanics in north Yunnan
Incorporated beds; undivided
Mississipian-Pennsylvanian
Continental clastics; lime-
stone interbedded with volcan-
ics in Weixi area

Incorporated beds; undivided
Devonian
Marine and continental clast-
ics, volcanics in Jinghong
area

Incorporated beds; undivided
Silurian
Marine clastics & mixed car-
bonate rocks in Yangtze
region, vocanic rocks in

west Qinling area
Incorporated beds; undivided

Continental carbonate and clas-
tic rocks, shallow marine volc-
anics west Qinling

Cambrian
Clastic and carbonate rocks
in Yangtze region
Precambrian
Undivided

INTRUSIVE ROCKS

AGE SUBDIVISIONS

1. Granitoids

5 = Yanshanian
5-3 = Late Yanshanian
5-2 = Early Yanshanian
5-1 = Indosinian
4 = Variscan
3 = Caledonian
3-2 = Late Caledonian
3-1 = Early Caledonian

granodiorite
granite
quartz-syenite (porphyry)
quartz-monzonite (porphyry)
quartz-diorite (porphyry)
2. Diorites
diorite
3. Mafic rocks
gabbro
diabase
4. Ultramafic rocks
peridotite
pyroxenite (porphyrite)
5. Alkanline rocks
alkaline rocks
Basalts
syenite (porphyry)
VOLCANIC ROCKS
Andesites

EXPLANATION

Ordovician

Age subdivisions appear as
suffixes to formation alpha-
numeric codes:

NN

KK
K2K2
K1K1

JJ
J3J3
J2J2
J1J1
T-JT-J

TT
T3T3
T2T2
T1T1

P-TP-T

PP
P2P2
P1P1

MP-PMP-P

MPMP
MP3MP3
MP2MP2
MP1MP1

D-MPD-MP

DD
D3D3
D2D2
D1D1

S-DS-D

SS
S3S3
S2S2

EE

QQ

S1S1
O-SO-S

OO
O3O3
O2O2
O1O1

CC

pCpC
pC3pC3
pC2pC2
pC1pC1

gdgd
gg

xoxo
eoeo

dodo

dd

nn

bmbm

ss
pipi

kk
bb
xx

aa

Figure 6-10.  Legend for the geological map of the Qinling and Dian-Qian-Gui area (see Figures 9 and 12,
respectively).  Legend layout, style, and geological map unit classification scheme is adopted from the
Geological Map of China (Cheng, 1990).  See Cheng (1990) and Wang (199) for additional details.
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The spatial associations between the training sites and the geological map units are
presented in table 6-3.  The table shows only those units that contain sites and is sorted in
descending order by Studentized contrast to aid in interpretation.  Five units have a Studentized
contrast greater than the desired 1.282, as well as positive W+ values.  These units, S

1
, D

1
, D

2
, P

1

and T
3
, correspond to marine carbonates of Silurian (S), Devonian (D), Permian (P) and Triassic

(T) age, respectively.  The very high contrasts of the D
1
, D

2
 and P

1
 units combined with their

large W+ values make them well suited as predictors.  The remaining two units, T
3
 and S

1
, also

were selected as predictors due to their W+ values.  After analysis of the spatial association
between training sites and geological map units, the geological evidence map was reduced to a
predictor map, which is illustrated in Figure 6-11.

In the Dian-Qian-Gui study area, similar problems to those found in the geological map
of the Qinling study area were encountered.  The map was modified in much the same way as it
was for the Qinling area, and is presented in figure 6-12.   The same legend is used for both the
Qinling and Dian-Qian-Gui geological maps, therefore for an

explanation of the units in figure 6-12, refer to figure 6-10.  The major geological map
unit, T

1
 (purple), a Triassic carbonate unit, occupies over 50,000 km2 of the Dian-Qian-Gui area

and contains more than half (31) of the training sites.  The other noticeable features on the
geological map are the circular structures in the middle of the map area.  These are domes that
act as structural windows to the underlying Paleozoic carbonate lithologies beneath the Triassic
sedimentary rocks.

The spatial associations between the training sites and geological map units in the Dian-
Qian-Gui area are presented in table 6-4.  The table is sorted in descending order by Studentized
contrast.  Inspection of the table reveals that there are only two units, P and P

2
, which have

Student-t values greater than 1.282.  The legend indicates that these are both Permian continental
clastic units.  These units were selected as predictors on the basis of high W+ values.  The
geological predictor map for the Dian-Qian-Gui area is presented in Figure 6-13, and detailed in
Appendix 6-1 of this report.

TABLE 6-3.  Weights of spatial association calculated for geological map units in the Qinling area.  Note
that weights with Studentized contrast values greater the desired 1.282 cutoff are shaded in light gray.
Unit codes correspond to those shown in Figure 6-10.

D2 23058.2900 15 1.3821 -0.1922 1.5744 5.3817
D1 1341.2000 2 2.2125 -0.0266 2.2392 3.1175
P1 12879.3200 6 1.0481 -0.0609 1.1090 2.5933
T3 18879.3600 7 0.8197 -0.0622 0.8819 2.2095
g5-1 16705.4200 6 0.7878 -0.0514 0.8393 1.9626
S1 23552.7900 7 0.5984 -0.0504 0.6488 1.6256
pC2 9589.3100 2 0.2442 -0.0065 0.2507 0.3493
T1 37958.7200 6 -0.0331 0.0033 -0.0364 -0.0851
D 6683.2500 1 -0.0880 0.0014 -0.0894 -0.0887
J2 21012.1200 3 -0.1349 0.0067 -0.1416 -0.2397
T 25780.6200 3 -0.3394 0.0188 -0.3583 -0.6067
pC3 19308.2000 2 -0.4558 0.0177 -0.4735 -0.6596
K 34527.1900 4 -0.3439 0.0260 -0.3699 -0.7176
Q 76250.5400 4 -1.1362 0.1418 -1.2780 -2.4796

UNIT AREA (Km2) No. of Deposits W+ W- Contrast Studentized Contrast
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Figure 6-11.  Predictor
map of geological map
units, Qinling area.

Youjiang
Fault System

Figure 6-12.  Geological map of
Dian-Qian-Gui area (legend is
found in Figure 6-10).
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TABLE 6-4.  Weights of spatial association calculated for geological map units in the Dian-Qian-Gui
area.  Note that weights with Studentized contrast values greater the desired 1.282 cutoff are shaded in
light gray.  Unit codes correspond to those shown in Figure 10.

P1 8005.3300 5 0.0294 -0.0027 -0.0321 3.1007
P2 6891.2500 11 0.9099 -0.1235 1.0333 2.9032
T1 55253.8400 31 -0.1368 0.1642 -0.3010 0.8215
D2 3613.3200 1 -0.8437 0.0223 -0.8661 0.3096
MP1 995.9500 0 0.2128
b 1196.1900 0 0.2008
T2 1309.8700 1 0.1715 -0.0026 0.1741 0.1726
MP2 8267.0900 6 0.1208 -0.0123 0.1332 -0.0688
K 121.2700 0 -0.8588
D1 1044.6200 0 -1.1749

Unit Area (Km2) No. of W+ W- Contrast Studentized
Deposits Contrast

Figure 6-13.  Predictor map of geological map units, Dian-Qian-Gui Area.
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Lithodiversity
Maps of lithodiversity were constructed for use as evidence maps.  This technique,

developed by Mihalasky and Bonham-Carter (1999, 2001), involves calculating the number of
geological map units in a square-shaped, sampling neighborhood.  Their research indicates that
the spatial association between mineral sites and lithodiversity increases with increasing
lithodiversity.  Lithodiversity is thought to represent complex structure and stratigraphy, which is
requisite for the formation of mineral deposits.  With this in mind, the technique involves
breaking the region down into square-shaped sample neighborhoods, in this case 10 by 10 km
neighborhoods, and calculating the lithodiversity for each.  A 10 by 10 km neighborhood was
chosen because it is the most suitable dimension for a 1:1,000,000 scale geological map (see
Mihalasky and Bonham-Carter, 2001) and the 10 km lithodiversity map has a greater spatial
association with the training sites than either 5 km or larger sample neighborhood maps.

The 10 km lithodiversity map for the Qinling area is shown in figure 6-14.  A maximum
of 13 geological map units was determined for a 10 by 10 km neighborhood size.  Warmer colors
indicate high lithodiversity, whereas cooler colors indicate lower values.  The trend of the
Qinling fold belt is reflected very well by high lithodiversity values, as illustrated by the general
east-west pattern of warmer colors.  The spatial association between lithodiversity and the
training sites is shown using a bar graph in figure 15.  Reading the graph from left to right, W+

and Studentized contrast values remain negative until a lithodiversity of 3 is reached.  This

Figure 6-14.  Map of lithodiversity, Qinling area. See explanation in text.
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indicates that areas containing 3 or more geological units within the 10 by 10 km sample
neighborhood have a positive spatial association with training sites.  Therefore, lithodiversity
values of 1 and 2 were classified as predictor map pattern absent, and values of 3 or more as
predictor map pattern present.  The lithodiversity predictor map is presented in figure 6-16.

Figure 6-15.  Spatial
association between
lithodiversity and training
sites, Qinling area.

Figure 6-16.  Predictor map of lithodiversity, Qinling area.
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Figure 6-17.  Map of
lithodiversity, Dian-
Qian-Gui area.

Figure 6-18:  Spatial
association between
lithodiversity and
training sites, Dian-
Qian-Gui area.
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The 10 km lithodiversity map for the Dian-Qian-Gui area is shown in figure 6-17.
Except for the marked high in the middle of the area, there appears to be a strong trend of larger
lithodiversity values toward the edges of the study area.  Visual inspection of the map makes it
difficult to determine if a positive spatial association between lithodiversity and training sites
exists.  The spatial association between the training sites and lithodiversity is shown in figure 6-
18.  As before, areas with a lithodiversity of 3 or more were classified as predictor map pattern
present, and areas with a lithodiversity of 1-2 were classified as predictor map pattern absent.
The lithodiversity predictor map constructed using these criteria is shown in figure 6-19.

Proximity to Geologic Contacts
The location of three important age boundaries were extracted from the geological map

dataset and analyzed for spatial association with the training sites.  These are the Devonian–
Carboniferous (D-MP), Carboniferous–Permian (MP-P) and the Permian–Triassic (P-T).  Li, Z.P.
and Peters (1998) have documented that numerous SRHG deposits occur at the Permian–Triassic
contact.  Stratigraphic contacts represent sharp permeability, rock strength, and chemical
gradients that provide controls on orebody location and shape (Li, Z.P. and Peters, 1998).  After
inspecting the geological maps, it was decided to extract and analyze the D-MP and MP-P
contacts as well.  Once extracted, the contacts were buffered at 2 km intervals.

Figure 6-19.  Predictor
map of lithodiversity,
Dian-Qian-Gui area.
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Figure 6-20.  Proximity to Paleozoic-Mesozoic geologic unit contacts, Qinling area.

In the Qinling study area, the Devonian–Carboniferous and the Permian–Triassic contacts
showed a positive spatial association with training sites.  The contacts were combined into a
single Paleozoic–Mesozoic contact, and one map of proximity to the contact was created (fig. 6-
20).  Visual inspection of the contact proximity map shows a strong spatial association between
the training sites and the contact, especially in the western part of the area.  Weights for
proximity to the contact is presented in figure 6-21.  A proximity of 0 to 6 km was selected as the
predictor map pattern, and was derived using a threshold defined by the highest W+ value to the
left of where W+ and the inverse of W- intersect.  Note that for distances greater than 6 km, W+

and the Studentized contrast begin to decline.  The predictor map of proximity to the Paleozoic–
Mesozoic contact is presented in figure 6-22.

Inspection of the three extracted contacts and training sites in the Dian-Qian-Gui study
area revealed that only the Permian-Triassic contact had a positive spatial association with the
training sites.  The proximity map to this contact is shown in figure 23.  Inspection of the map
reveals the association between the P-T contact and training sites is indeed high.  The graph of
weights for contact proximity (fig. 6-24) reflects this in the steady decrease of W+ as distance
from the contact increases.  A proximity of 0 to 2 km to the P-T contact was selected as the
predictor map pattern (fig. 6-25).
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Figure 6-21.  Spatial
association between
proximity to Paleozoic-
Mesozoic geologic unit
contacts and training sites,
Qinling area.

Figure 6-22.  Predictor map for
proximity to Paleozoic-
Mesozoic geologic unit
contacts, Qinling area.
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Figure 6-23.  Proximity to
Permian-Triassic geologic
unit contacts, Dian-Qian-
Gui area.

Figure 6-24.  Spatial association between proximity to Permian-Triassic
geologic unit contacts and training sites, Dian-Qian-Gui area.
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Figure 6-25.  Predictor map for proximity to Permian-
Triassic geologic unit contacts, Dian-Qian-Gui area.

Proximity to Faults
Fault traces accompanied both the GDS and USGS geologic map datasets.  The GDS

data were used as the primary data source, while the USGS data were used to augment the GDS
data and fill in any gaps in coverage.  Faults in Qinling and Dian-Qian-Gui are discussed in
detail in Chapters 3 and 4.  Recent fault scarps are portrayed in the processed topographic data
(figs. 6-35 and 6-38).

Inspection of faults in the Qinling study area revealed that there was no particular fault
orientation that was more correlated with the training sites than another.  Therefore, all fault
orientations were used in the analysis.  The fault proximity evidence map is shown in figure 6-
26.  Visual inspection reveals that, in general, individual training sites and clusters of sites,
particularly in the west, appear in close proximity to faults.  The spatial association between
training sites and proximity to faults is shown in figure 6-27.  Positive spatial association is at a
maximum within 2 km of the faults.  This is reflected by the steady decrease of W+ away from
faults.  The predictor map of fault proximity for the Qinling area is presented in figure 6-28.



374

Figure 6-26.  Proximity to
faults, Qinling area.

Figure 6-27.  Spatial association
between proximity to faults and
training sites, Qinling area.



375

Figure 6-28.  Predictor
map for proximity to
faults, Qinling area.

In the Dian-Qian-Gui area, a high correlation was found to exist between the training
sites and faults with an east-northeast-orientation.  This was determined by filtering the fault
orientations by azimuth into six sets of 30o each and performing WofE proximity analyses to
determine which had the strongest spatial association with the training points.  The fault
proximity evidence map for these faults is shown in figure 6-29.  The spatial association between
the training sites and proximity to faults is presented in figure 6-30.  Again, the value of W+ is at
a maximum within 2 km of the faults and decreases as distance away from the faults increases.
The fault proximity predictor map is shown in Figure 6-31.

The Youjiang fault system also was used as evidence in the Dian-Qian-Gui study area.  A
spatial correlation between the distribution of SRHG deposits and this fault system has
previously been suggested by Li, Z.P. and Peters (1998).  Visual inspection reveals that more
than half of the training sites occur within 50 km of the system.  With this in mind, the fault
system was buffered at the 2 km interval, but was carried out to 100 km instead of usual 50 km.
The proximity to fault system evidence map is shown in figure 6-32.  The spatial association
between the training sites and proximity to the fault system is presented in figure 6-33.
Inspection of the graph reveals that W+ and the inverse of W- cross at approximately 60 km.  At a
distance of 54 km, just prior to this crossover, W+ reaches a maximum.  The contrast and
Studentized contrast support the interval of 0-54 km as a suitable predictor map pattern.  The
predictor map constructed from these criteria is shown in figure 6-34.
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Figure 6-29.  Proximity to
ENE-trending faults, Dian-
Qian-Gui area.

Figure 6-30.  Spatial
association between
proximity to ENE-
trending faults and
training sites, Dian-
Qian-Gui area.
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Figure 6-31.  Predictor map
of proximity to ENE-trending
faults and training sites, Dian-
Qian-Gui area.

Figure 6-32.  Proximity to the
Youjiang Fault System, Dian-
Qian-Gui.



378

Figure 6-33.  Spatial association between
proximity to the Youjiang Fault System
and training sites, Dian-Qian-Gui.

Figure 6-34.  Predictor map for
proximity to the Youjiang Fault
System and training sites, Dian-
Qian-Gui.
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Topographic Slope
Maps of topographic slope were used as evidence in both the Qinling and Dian-Qian-Gui

study areas.  The rational for using slope as evidence is that abrupt breaks in slope may reflect
the presence of unrecognized faults, or faults that are too small to be represented at the scales of
the GDS and USGS geological maps.  Slope maps were created from 30 arc-second digital
elevation models (DEM) obtained from the USGS’s EROS Data Center.  The resolution of this
data for the Qinling and Dian-Qian-Gui study areas is approximately 1 km.  The preparation of
this dataset for use in a GIS is detailed by Barto (2000).  Once in the proper format, the slope
was calculated using the ArcView function

“derive slope”.  This identifies the maximum rate of change in elevation, from each cell
to its neighbors.

The slope evidence map for the Qinling area is shown in figure 6-35.  Areas with the
greatest change in slope appear in the southwestern and southeastern portions of Qinling.  The
spatial association between the training sites and slope is presented in figure 36.  A slope of
greater than 8˚ was selected as the predictor pattern.  From inspection of the graph, values of 8˚
or higher have a positive W+ and a high contrast and Studentized contrast.  The predictor map of
slope is shown in figure 6-37.

Figure 6-35.  Topographic slope map, Qinling area.
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Figure 6-36.  Spatial association
between topographic slope and
training sites, Qinling area.

Figure 6-37.  Predictor map of
topographic slope, Qinling area.
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Figure 6-38.  Topographic
slope map, Dian-Qian-
Gui area.

Figure 6-39.  Spatial association between topographic slope and training sites, Dian-Qian-Gui area.
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The slope evidence map for the Dian-Qian-Gui study area is shown in figure 6-38. The
largest slope values appear in the northwestern portion of the study area.  The spatial association
between the training sites and slope is presented in figure 6-39.  A slope of 7˚ or greater was
selected as the predictor pattern.  The reason for this is that the graph illustrates that at 7˚ and 8˚,
the values for W+, contrast and Studentized contrast are all very good.  At 9˚, the spatial
association drops, but this interval was overlooked in favor of including all values above 7˚ in
the predictor pattern.  The predictor map of slope is shown in figure 6-40.

Proximity to Anticlines
Anticline axial plane traces accompanied both the GDS and USGS geological map

datasets.  The datasets were used to augment each other and fill in any gaps in coverage.  After
visual inspection, it was determined that a correlation with training sites exists only in the Dian-
Qian-Gui study area.  Domal anticlines of Paleozoic rocks in the Dian-Qian-Gui area appear
more significant in the WofE analysis because they contrast more sharply with surrounding and
overlying Mesozoic rocks than do the more highly eroded complex folds in the Qinling fold belt.

Figure  6-40.  Predictor map
of topographic slope, Dian-
Qian-Gui area.
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The evidence map of proximity to anticlines is shown in figure 6-41.  Visual inspection
reveals that many training sites are close to anticlines, whereas those that are not are located
several kilometers away.  The spatial association between the training sites and proximity to
anticlines is presented in figure 6-42.  Inspection of the graph reveals that spatial association
declines rapidly as distance from anticlines increases.  The highest spatial association exists at a
distance of 0 to 2 km.  The proximity to anticlines predictor map created from this spatial
association is shown in figure 6-43.

Figure 6-41.  Proximity to
anticline axes, Dian-Qian-
Gui area.

Figure 6-42.  Spatial association
between proximity to anticline axes
and training sites, Dian-Qian-Gui area.
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FAVORABILITY MAP GENERATION and ANALYSIS
The next step in modeling the distribution of SRHG sites is to combine the predictor

maps to produce favorability maps.  This is the third step of the modeling process (fig. 6-5).  The

Qinling and Dian-Qian-Gui study areas are discussed separately below, with an overall analysis

and interpretation for each area following the selection of the “most acceptable” posterior

probability model.  In these applications, “most acceptable” refers to the model that exhibits the

least amount of conditional dependency, thus allowing interpretations to be made with more

assurance.  The stepwise process is presented by illustrating several posterior”probability models

for each study area in order to arrive at this “most acceptable” model.

Figure 6-43.   Predictor map of proximity to
anticline axes, Dian-Qian-Gui area.



385

Qinling Study Area
The prior favorability for the Qinling area is 0.0002.  Five predictor maps were used for

modeling:
• Geological Map Units
• Proximity to Paleozoic-Mesozoic Unit Contact
• Lithodiversity
• Proximity to Faults
• Topographic Slope

Model QA
The QA favorability map, created by combining all five predictor maps, is shown in Figure

6-44.  Higher favorabilities are indicated by warmer colors, whereas lower values are represented
by cooler tones.  The weights of spatial association for each predictor map are presented in table 6-
5.  As indicated in the table, all predictor maps have confidence (Student-t) values above the
desired 1.282.  Further inspection shows that the lithodiversity and the Paleozoic-Mesozoic contact
predictors have the greatest influence, as reflected by their high contrast values.

Geological Map Units 1.1712 -0.7489 1.9201 7.6937
P-M Contact 1.1721 -0.6862 1.8583 7.5407
Slope 0.4536 -1.2210 1.6747 4.6795
10 km Lithodiversity 0.2804 -0.7103 0.9907 3.2122
Fault Traces 0.4660 -0.2317 0.6977 2.8314

TABLE 6-5.  Weights of spatial association for Model QA, Qinling area.

Predictor Layer W+ W- CONTRAST CONFIDENCE

Figure 6-44.  Model
QA favorability map,
Qinling area.
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The overall test for CI yields a ratio of 0.43.  This means that the model predicts 57
percent more training sites than observed.  The CI ratio is below the desired range of <10 to 15
percent, which implies that there is a high degree of conditional dependency among the predictor
maps.  Chi-square testing of CI does not yield a similar result (table 6-6).  Examination of the
test results indicates that while conditional dependency exists between pairs, all are within the
acceptable range of <5.4.  The conclusion made as to the failure of the model in the overall test
and passing of the chi-square test is that conditional independency is being violated due to multi-
way combinations of predictor maps.

Model QB
After examining the predictor map weights and conditional dependencies for model QA

(tables 6-5 and 6-6), the decision was made to eliminate the lithodiversity predictor map from the
model due to its relatively low contrast and high χ2 values with the proximity to Paleozoic–
Mesozoic contact predictor map.  The QB favorability map is shown in figure 6-45.  Visual
inspection reveals that the overall pattern is very similar to that of the QA favorability map (fig.
6-44), but the favorability values are not as high as those for the QA favorability map.  The
predictor map weights of spatial association (table 6-7) are the same as for model QA (table 6-5),
except for the absence of the lithodiversity predictor.

Overall CI is 0.52, still well below the desired range.  Chi-square testing (table 6-8)
shows that conditional dependency does exist, but is still within acceptable limits.

Model QC
Upon inspection of the predictor map weights and conditional dependencies for model

QB (tables 6-7 and 6-8), the decision was made to run the model after eliminating the slope
predictor map due to its low contrast and large χ2 value with the lithodiversity predictor map, the
result of which is shown in figure 6-46.  The QC favorability map is similar to the QA and QB
favorability maps.  Note, however, the lower favorabilities surrounding the faults, which is due
to a decrease in contrast.  The predictor map weights of spatial association are presented in table
6-9.  The overall test for CI is 0.67.  While much better than models QA, QB, and QC, it is still
well below the desired range.  The results of chi-square testing are presented in table 6-10.  Once
again, chi-square values are within the acceptable range.

Fault Traces 0.01 0.06 0.05 0.05
Geological Map Units 2.01 2.30 0.11
P-M Contact 1.70 3.89
Slope 0.50

TABLE 6-6.  Chi-square values for pairwise conditional independence
testing of Model QA, Qinling area.

Predictor Layer Geological P-M Contact Slope 10 km
Map Units Lithodiversity
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Figure 6-45:  Model
QB favorability
map, Qinling area.

Geological Map Units 1.1712 -0.7489 1.9201 7.6937
P-M Contact 1.1721 -0.6862 1.8583 7.5407
Slope 0.4536 -1.2210 1.6747 4.6795
Fault Traces 0.4660 -0.2317 0.6977 2.8314

Predictor Layer W+ W- CONTRAST CONFIDENCE

TABLE 6-7.  Weights of spatial association for Model QB, Qinling area.

Predictor Layer P-M contact Geological Fault Traces
Map Units

Slope 1.70 2.30 0.05
P-M Contact 2.01 0.06
Geological Map Units 0.01

TABLE 6-8.  Chi-square values for pairwise conditional
independence testing of Model QB, Qinling area.
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Figure 6-46.  Model
QC favorability
map, Qinling area.

Predictor Layer W+ W- CONTRAST CONFIDENCE

Geological Map Units 1.1712 -0.7489 1.9201 7.6937
P-M Contact 1.1721 -0.6862 1.8583 7.5407
Fault Traces 0.4660 -0.2317 0.6977 2.8314

TABLE 6-9.  Weights of spatial association for Model QC, Qinling area.

Predictor Layer Geological P-M Contact
Map Units

Fault Traces 0.01 0.06
Geological Map Units 2.01

TABLE 6-10.  Chi-square values for pairwise
conditional independence testing of Model QC,
Qinling area.
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Model QD
After consulting the predictor map weights and conditional dependencies for model QC

(tables 6-9 and 6-10), the decision was made to combine the lithodiversity and proximity to
Paleozoic-Mesozoic contact predictor patterns (fig. 6-47).  Even though their chi-square value
was below 5.4, it was the highest of all the predictor map pairs.  The QD favorability map is
shown in figure 6-48.  The predictor map weights of spatial association are shown in table 6-11.
The confidence and Studentized contrast values are very good, as are the weights.  The overall
CI is 0.75.  While still below the desired amount, this is by far the most acceptable of the four
Qinling study area models.  Results of the chi-square test are presented in table 6-12.  Despite
combining the lithodiversity and proximity to Paleozoic-Mesozoic contact predictor patterns, it
still failed the Chi-square test with topographic slope.  They have a χ2 value of 5.49, above the
cut-off of 5.4.

Figure 6-47.  Predictor map of merged geological map units and proximity to
Paleozoic-Mesozoic geologic unit contacts, Qinling area.
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Figure 6-48.  Model
QD favorability map,
Qinling area.

Predictor Layer Fault Traces Geological Map Units/P-M contact

Slope 0.05 5.49
Fault Traces 0.59

TABLE 6-12.  Chi-square values for pairwise conditional
independence testing of Model QD, Qinling area.

Predictor Layer W+ W- CONTRAST CONFIDENCE

Geological Map Units/P-M Contact 0.9866 -1.2294 2.2160 7.3884
Slope 0.4536 -1.2210 1.6747 4.6795
Fault Traces 0.4660 -0.2317 0.6977 2.8314

TABLE 6-11.  Weights of spatial association for Model QD, Qinling area.
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Analysis of Qinling Study Area Models
Model QC (fig. 6-46) is considered most suitable for performing analysis and

interpretation.  Although its overall CI value was below the desired value of >0.85, chi-square
testing, as well as its predictor map weights, Model QC represents the most acceptable
compromise of the four models.  Due to the fact that CI does exist among the predictor maps, the
probabilities should be viewed only as favorabilities.  This is due to the fact that it is not possible
to determine the exact difference between a probability of, say, 0.0004 and 0.0006, but only that
one (0.0006) is greater than the other (0.0004).

The map of total uncertainty for the QC favorability map is shown in Figure 6-49.  The
pattern of total uncertainty is similar to that of the favorability map due to the fact that data
coverage for each map was complete across the region, therefore, most of the uncertainty is due
to variances in weight estimates.  The relative certainty to which the favorabilities can be
interpreted is a reflection of their t-values.  From table 6-9, it is seen that the confidence of the
predictor maps is relatively high; consequently, the favorabilities can be evaluated with relatively
high degree of confidence.

Interpretation of Qinling Study Area Models
Although the QC favorability map failed the overall test for CI, it is still very useful for

delineating regional-scale exploration targets.  The relative influence of the predictor maps for
model QC, in order from most to least important, is as follows:  geological map units, proximity
to Paleozoic-Mesozoic contact, and proximity to faults.

Figure 6-49.  Model QC total uncertainty map, Qinling area.
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To aid in interpreting the QC favorability map, areas with favorabilities less than or
equal to the prior were masked out.  To further aid in the analysis, a 5 km distance buffer was
placed around the training sites with the assumption that these areas have been previously
explored (fig. 6-50).

With these areas masked out, numerous exploration targets are apparent throughout the
region (fig. 6-50).  Three areas are of particular interest.  The first area of interest is the southern
extent of the Qinling fold belt (fig. 6-48).  No known mineral sites are located in this area, yet
the favorability is very high, stretching nearly 700 km from east to west.  The second area of
interest occurs in the east-central portion of the study area, and is marked by the large cluster of
high favorabilities with only 3 training sites.  This area of high probabilities is nearly 4,800 km2.
The third, but certainly not final, area of interest lies approximately between 103˚-105˚ N
longitudes and 34.5˚ to 33.5˚ E latitude.  Though more than half a dozen training sites occur in
this area, its large size and extent, along with very high favorabilities, makes it a worthwhile
exploration target.

The models for the Qinling study area suggest that the regional-scale distribution of the
SRHG mineral sites is primarily influenced by lithology, specifically carbonate rock units of
Permian age.

Figure 6-50.  Favorability map of Model QC used for interpretation, Qinling area.  Note that areas with
favorabilities less than or equal to the prior have been masked out (light gray).  Five km buffers have been
placed around all training sites (dark gray around sites).



393

Dian-Qian-Gui Study Area
The prior favorability for the Dian-Qian-Gui study area is 0.0006, slightly higher than

that of the Qinling area, mainly due to its smaller size compared to the number of training sites.
Seven predictor maps were used for modeling:

• Geological Map Units
• Proximity to Permian-Triassic Unit Contact
• Lithodiversity
• Proximity to ENE-Trending Faults
• Proximity to the Youjiang Fault System
• Proximity to Anticlines
• Topographic Slope

Model DA
The DA favorability map, created by combining all seven predictor maps, is shown in

figure 6-51.  Warmer tones reflect higher favorabilities, while cooler tones reflect lower.  The
strong influence of the proximity to Youjiang fault system predictor map is visually apparent in
the favorability map as an oblong shape, extending from the southeast to the central portion of
the region.  Note how areas within this region have elevated favorabilities compared to those
outside.  The weights of spatial association for each predictor map are presented in table 6-13.
Visual inspection reveals that all of the predictor maps have relatively good values, except for
lithodiversity.  This predictor map has a confidence below the cut-off of 1.282.  Therefore, this
map should be omitted from the model.  Overall CI is 0.99, well above the desired 0.85.
However, the results of chi-square testing (table 6-14) are not as good.  A very large χ2 value of
17.41 is observed for the geological and the proximity to Permian-Triassic unit contact predictor
maps.  The conditional dependency was mitigated by combining the geological and Permian-
Triassic contact predictor maps, referred to as the “lithoPT” predictor map (fig. 6-52).

Model DB
For the DB favorability map, the lithodiversity predictor map was eliminated from the

model, and the geological and the proximity to Permian-Triassic unit contact predictor maps
were combined and treated as a single predictor pattern (fig. 6-53).  The weights of spatial
association for each predictor map are presented in table 6-15.  The predictor maps have
confidence values above 1.282 and high contrast values.  Overall CI for the model is 1.03,
reflecting an under prediction of training sites by 3 percent.  Inspection of the chi-square table
(table 6-16) reveals that all values are below the desired 5.4.

Model DC
Although Model DB passes all tests for CI, and the predictor maps have high weights

values, a third favorability maps was created where the proximity to Youjiang fault system was
eliminated (fig. 6-54).  This is done to better understand the impact that proximity to the
Youjiang fault system has on modeling. The effect of eliminating the proximity to the Youjiang
fault system predictor map from the model is that there is more of a balance of high values
throughout the favorability map.  Areas that fell within the Youjiang fault system are no longer
slightly higher than those outside.  The predictor map weights for model DC (table 6-17) show
high W+ and contrast values.  The overall CI is 0.99, reflecting only a 1 percent under estimation
of training sites.  The test of chi-square CI (table 6-18) indicates that none of the predictor map
combinations fall outside of the acceptable cut-off of 5.4.
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Figure 6-51.  Model DA favorability
map, Dian-Qian-Gui area.

Figure 6-52:  Predictor map of
merged geological map units
and proximity to Permian-
Triassic geologic unit contacts,
Dian-Qian-Gui area.
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Geological Map Units 1.0322 -0.1754 1.2076 3.9632
Youjiang Fault System 0.6343 -0.5447 1.1791 4.4970
P-T Contact 0.5449 -0.3226 0.8675 3.3823
Anticline Traces 0.5933 -0.1144 0.7077 2.2624
Slope 0.2961 -0.1019 0.3980 1.4170
ENE-Trending Fault Traces 0.3131 -0.0840 0.3971 1.3352
10 km Lithodiversity 0.0321 -0.0785 0.1106 0.3872

TABLE 6-13.  Weights of spatial association for Model DA, Dian-Qian-Gui area.

Predictor Layer W+ W- CONTRAST CONFIDENCE

10 km Lithodiversity 10.19 0.07 3.16 0.01 2.42 5.34
P-T Contact 2.82 1.99 0.00 1.34 17.41
Anticline Traces 0.90 0.06 2.56 1.22
ENE-Trending Fault Traces 2.50 0.08 2.12
Youjiang Fault System 4.24 1.54
Slope 1.19

TABLE 6-14.  Chi-square values for pairwise conditional independence testing
of Model DA, Dian-Qian-Gui area.

Predictor Layer P-T Anticline ENE-Trending Youjiang Slope Geological
Contact Traces Fault Traces  Fault Map Units

System

Youjiang Fault System 0.6343 -0.5447 1.1791 4.4970
Geological Map Units/P-T Contact 0.4755 -0.2949 0.7704 3.0038
Anticline Traces 0.5933 -0.1144 0.7077 2.2624
Slope 0.2961 -0.1019 0.3980 1.4170
ENE-Trending Fault Traces 0.3131 -0.0840 0.3971 1.3352

TABLE 6-15.  Weights of spatial association for Model DB, Dian-Qian-Gui area.

Predictor Layer W+ W- CONTRAST CONFIDENCE

Geological Map Units/P-T Contact 2.82 1.99 0.00 1.34
Anticline Traces 0.90 0.06 2.56
ENE-Trending Fault Traces 2.50 0.08
Youjiang Fault System 4.24

TABLE 6-16.  Chi-square values for pairwise conditional independence testing
of Model DB, Dian-Qian-Gui area.

Predictor Layer Anticline Traces ENE-Trending Youjiang Fault Slope
Fault Traces System
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Figure 6-53.  Model
DB favorability map,
Dian-Qian-Gui area.

Figure 6-54:  Model
DC favorability map,
Dian-Qian-Gui area.
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Geological Map Units/P-T Contact 0.4755 -0.2949 0.7704 3.0038
Anticline Traces 0.5933 -0.1144 0.7077 2.2624
Slope 0.2961 -0.1019 0.3980 1.4170
ENE- Trending Fault Traces 0.3131 -0.0840 0.3971 1.3352

TABLE 6-17.  Weights of spatial association for Model DC, Dian-Qian-Gui area.

Predictor Layer W+ W- CONTRAST CONFIDENCE

Predictor Layer Anticline Traces ENE- Trending Fault Slope
Traces

TABLE 6-18.  Chi-square values for pairwise conditional
independence testing of Model DC, Dian-Qian-Gui area.

Geological Map Units/P-T Contact 2.82 1.99 1.34
Anticline Traces 0.90 2.56
ENE- Trending Fault Traces 0.08

Figure 6-55:  Model DB
total uncertainty map,
Dian-Qian-Gui area.
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Analysis of Dian-Qian-Gui Study Area Models
Models DB and DC are considered most suitable for analysis and interpretation.  Once

again, due to the presence of conditional dependency, probabilities should be viewed as
favorabilities for the same reasons as discussed previously.  Maps of total uncertainty were
constructed for both models (figs. 6-55 and 6-56).  As expected, the patterns reflect those of the
favorability maps due to the fact that the majority of error is from the variance in weight estimates.

 From tables 6-15 and 6-17, it can be seen that the confidence of the predictor maps is
relatively high; consequently, the favorabilities can be evaluated with relatively high degree of
confidence.

Interpretation of Dian-Qian-Gui Study Area Models
Model DB predictor maps in order of influence are as follows:  proximity to Youjiang

fault system, lithoPT, proximity to anticlines, slope, and proximity to east-northeast-trending
faults (table 6-15).  Note that for the Youjiang fault system, the magnitude of W- is just slightly
less than W+.  The reason for this is that both patterns occupy a large area and encompass many
training sites.  To aid in interpretation of the model, areas with posterior favorabilities less than

Figure 6-56:  Model DC total uncertainty map, Dian-Qian-Gui area.
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or equal to the prior (0.0006), have been masked out (fig. 6-57).  Again, a 5 km buffer is
placed around training sites with the assumption that these areas have been previously
explored.  The DB favorability map indicates that all areas within the 54 km Youjiang fault
system distance buffer have posterior favorability values above the prior.  Obvious areas of
exploration would be within this area along the segments of high favorability (red).  A few
areas outside of the Youjiang fault system have high favorabilities as well, and should draw
some attention.  Examination of the DB favorability map suggests that the regional scale
control over mineral sites distribution may be related to the upward movement of ore forming
fluids along the Youjiang fault system where they then migrated laterally along anticlines and
east-northeast-trending faults and encountered carbonate units of Permian to Triassic age in
which ore bodies formed..

Figure 6-57:  Favorability map of Model DB used for interpretation, Dian-Qian-Gui area.  Note that areas with
favorabilities less than or equal to the prior have been masked out (light gray).  Five km buffers have been
placed around all training sites (dark gray around sites.
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Model DC, which excludes the Youjiang fault system proximity predictor map, is very
different than that of DB favorability map.  The predictor maps in order of influence are as
follows: lithoPT, proximity to anticlines, slope, and proximity to east-northeast-trending faults.
Figure 6-58 shows the DC favorability map after areas with posterior favorabilities less than or
equal to the prior (0.0006) have been masked out, as well as 5 km buffers placed around the
training sites.  Visual inspection reveals that by eliminating the Youjiang fault system proximity
predictor map the number and extent of exploration targets increases dramatically.  Higher
favorability values are more widespread throughout the area, especially along the northwestern
and southwestern margins of the study area.  It is also significant that in both of these regions, few
known mineral sites occur.  This, of course, may be proof that the Youjiang fault system is indeed
a fundamental or first-order control over the distribution of SRHG mineral sites in the area.

Figure 6-58.  Favorability map of Model DC used for interpretation, Dian-Qian-Gui area.  Note that areas
with favorabilities less than or equal to the prior have been masked out (light gray).  Five km buffers
have been placed around all training sites (dark gray around sites).
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CONCLUSIONS
Weights-of-evidence was used to model the distribution of SRHG mineral sites in two

study areas, Qinling and Dian-Qian-Gui, in the People’s Republic of China.  Despite major
differences in study area size, tectonic setting, and evidence layers, WofE modeling proved to be
successful in both Qinling and Dian-Qian-Gui, providing numerous regional-scale targets for
future exploration. In general, the Dian-Qian-Gui favorability maps have fewer CI problems, but
the Qinling favorability maps provide better defined and focused target areas.

In the
Qinling study area, four models were built and their validity tested.  All passed the chi-

square test for CI, but also failed to reach the goal of >85 percent for the overall test of CI.  One
model, QC, was chosen as the most acceptable of these models.

From this model, three areas in particular were selected as the promising locations of
exploration, while numerous other areas should also be considered.

In the Dian-Qian-Gui area, three models were built, all of which passed the overall test
for CI.  Models DB and DC were chosen as the most acceptable of these and both passed the
tests for chi-square CI, as well as overall CI.  According to Model DB, which used the Youjiang
fault zone as one of the predictor maps, target areas for exploration are all within a 54 km zone
surrounding the fault.  The underlying metallogenic assumption which is built into this model is
that the Youjiang fault system is a major control over the regional-scale distribution of the
mineral sites.  By not including the Youjiang fault system this assumption is removed, and as is
shown in Model DC, numerous other areas throughout the region are highlighted as potential
exploration targets.  One model should not be considered better or worse than the other, but they
should interpreted with regard to predictive evidence provided by the Youjiang fault system.

This study demonstrates that WofE modeling can be utilized to highlight regional-scale
targets where more detailed exploration may be warranted, as well as provide for regional-scale
interpretations of mineralization controls.  Furthermore, this study has demonstrated that WofE
modeling can be successfully carried out using evidence layers derived largely, and in some
cases exclusively, from geological map data.
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